Разница между остеобластом и остеокластом
Содержание
Пластинчатая костная ткань
Пластинчатая
костная ткань (textus
osseus lamellaris)
— наиболее распространенная разновидность
костной ткани во
взрослом организме.
Она состоит из костных пластинок
(lamellae
ossea).
Толщина и длина последних колеблется
от нескольких десятков до сотен
микрометров. Они не монолитны, а содержат
фибриллы, ориентированные в различных
плоскостях.
В
центральной части пластин фибриллы
имеют преимущественно продольное
направление,
по периферии — прибавляется тангенциальное
и поперечное направления. Пластинки
могут расслаиваться, а фибриллы одной
пластинки могут продолжаться в соседние,
создавая единую волокнистую основу
кости. Кроме того, костные пластинки
пронизаны отдельными фибриллами и
волокнами, ориентированными перпендикулярно
костным пластинкам, вплетающимися в
промежуточные слои между ними, благодаря
чему достигается большая прочность
пластинчатой костной ткани. Из этой
ткани построены и компактное, и губчатое
вещества в большинстве плоских и
трубчатых костей скелета.
Костная ткань
Костная ткань (textus ossei) отличается особыми механическими свойствами. Она состоит из костных клеток, замурованных в костное основное вещество, содержащее коллагеновые волокна и пропитанное неорганическими соединениями. Различают три типа костных клеток: остеобласты, остеоциты и остеокласты.
Остеобласты — это отростчатые молодые костные клетки многоугольной, кубической формы. Остеобласты богаты элементами зернистой эндоплазматической сети, рибосомами, хорошо развитым комплексом Гольджи и резко базофильной цитоплазмой. Они залегают в поверхностных слоях кости. Округлое или овальное ядро их богато хроматином и содержит одно крупное ядрышко, обычно расположенное на периферии. Остеобласты окружены тонкими коллагеновыми микрофибриллами, Вещества, синтезируемые остеобластами, выделяются через всю их поверхность в различных направлениях, что приводит к образованию стенок лакун, в которых эти клетки залегают. Остеобпасты синтезируют компоненты межклеточного вещества (коллаген — это компонент протеогликана). В промежутках между волокнами располагается аморфное вещество — остеоидная ткань, или предкость, которая затем кальцифицируется. Органический матрикс кости содержит кристаллы гидроксиапатита и аморфный фосфат кальция, элементы которых поступают в костную ткань из крови через тканевую жидкость.
Остеоциты — это зрелые многоотростчатые веретенообразные костные клетки с крупным округлым ядром, в котором четко видно ядрышко. Количество органелл невелико: митохондрии, элементы зернистой эндоплазматической сети и комплекс Гольджи. Остеоциты располагаются в лакунах, однако тела клеток окружены тонким слоем так называемой костной жидкости (тканевой) и не соприкасаются непосредственно с кальцинированным матриксом (стенками лакуны). Очень длинные (до 50 мкм) отростки остеоцитов, богатые актиноподобными микрофиламентами, проходят в костных канальцах. Отростки также отделены от кальцинированного матрикса пространством шириной около 0,1 мкм, в котором циркулирует тканевая (костная) жидкость. За счет этой жидкости осуществляется питание (трофика) остеоцитов. Расстояние между каждым остеоцитом и ближайшим кровеносным капилляром не превышает 100-200 мкм.
Остеокласты — это крупные многоядерные (5-100 ядер) клетки моноцитарного происхождения, размером до 190 мкм. Эти клетки разрушают кость и хрящ, осуществляют резорбцию костной ткани в процессе ее физиологической и репаративной регенерации. Ядра остеокластов богаты хроматином и имеют хорошо видимые ядрышки. В цитоплазме содержится множество митохондрий, элементов зернистой эндоплазматической сети и комплекса Гольджи, свободных рибосом, различных функциональных форм лизосом. Остеокласты имеют многочисленные ворсинкообразные цитоплазматические отростки. Таких отростков особенно много на поверхности, прилежащей к разрушаемой кости. Это гофрированная, или щеточная, каемка, увеличивающая площадь соприкосновения остеокласта с костью. Отростки остеокластов также имеют микроворсинки, между которыми находятся кристаллы гидроксиапатита. Эти кристаллы обнаруживаются в фаголизосомах остеокластов, где они разрушаются. Деятельность остеокластов зависит от уровня паратиреоидного гормона, увеличение синтеза и секреции которого приводит к активации функции остеокластов и разрушению кости.
Различают два типа костной ткани — ретикулофиброзную (грубоволокнистую) и пластинчатую. Грубоволокнистая костная ткань имеется у зародыша. У взрослого человека она располагается в зонах прикрепления сухожилий к костям, в швах черепа после их зарастания. Грубоволокнистая костная ткань содержит толстые неупорядоченные пучки коллагеновых волокон, между которыми находится аморфное вещество.
Пластинчатая костная ткань образована костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов, основного вещества, тонких коллагеновых волокон. Волокна (коллаген 1 типа), участвующие в образовании костных пластинок, лежат параллельно друг другу и ориентированы в определенном направлении. При этом волокна соседних пластинок разнонаправленные и перекрещиваются почти под прямым углом, что обеспечивает большую прочность кости.
Смотри также:
Искусственная костная ткань в стоматологии . Препараты ускоряющие процессы образования костной ткани . Деструкция костной ткани что это такое лечение . Маркер резорбции костной ткани что это такое . Размягчение костной ткани зуба что .
Остеофиты
Остеофит — это краевое костное разрастание, костный выступ, чаще всего по виду напоминает шип, может иметь неправильную форму. Кстати, «пяточные шпоры» — это тоже остеофиты. В зависимости от положения связок в местах прикрепления к телам позвонков остеофиты имеют горизонтальные или вертикальные направления, но преимущественно неправильной косой формы. Они никогда не срастаются друг с другом. Бывает, что при переломе остеофитов процесс костеобразования в нём активизируется, и остеофит после заживления (сращения) становится ещё более массивнее и значительнее. Множественное проявление остеофитов называется остеофитозом. Этот процесс, как и спондилёз, в большинстве случаев протекает бессимптомно и не требует специального лечения.
Костные разрастания и высота межпозвонкового промежутка косвенно указывают на процессы, которые происходят в межпозвонковом диске, что подтверждается при сравнении рентгенологических и МРТ обследований.
Рассмотрим серию снимков.
На МРТ №36 — начальная стадия развития спондилёза (первой степени)
На рентгенограмме №4 изображен межпозвонковый сегмент в далеко зашедшей стадии дегенерации. Спондилёз второй степени в сочетании со снижением межпозвонкового промежутка говорит о том, что в прошлом на данном уровне имелась протрузия межпозвонкового диска, которая была стабилизирована развившейся стадией фибротизации поражённого диска (что хорошо видно на МРТ № 37).
Бывает, что спондилёз может травмировать эпидуральную клетчатку (при движении позвоночника), в результате чего в ней возникают асептические воспалительные процессы.
Эпидуральная клетчатка со временем уплотняется, склерозируется, в ней появляются фиброзные тяжи, которые могут деформировать спинномозговой корешок, вызвать его натяжение или сдавление. А при значительном увеличении (разрастании) спондилёза может развиться стеноз спинномозгового канала второго типа (первый тип стеноза — врождённый, второй — приобретённый), что довольно часто бывает при срыве адаптивных механизмов во время развития дегенеративно-дистрофических процессов в межпозвонковых дисках.
На рентгенограмме №5 шейного отдела позвоночника — выраженный спондилёз третьей степени и остеофитоз, что хорошо видно на МРТ №38 сегментов шейного отдела позвоночника.
В целом можно сказать, несмотря на то что спондилёз и остеофиты являются следствием определённых заболеваний позвоночника и в некоторой степени способствуют биомеханическим нарушениям в других сегментах позвоночника, всё же они небесполезны. Во многих случаях это своеобразная «скорая помощь» организма в ответ на невозможность осуществить полноценную регенерацию повреждённого позвоночнодвигательного сегмента. Данные костные наросты хоть и ограничивают движение сегмента, но тем самым предупреждают и замедляют его дальнейшее разрушение.
На рентгенограмме №6 поясничного отдела позвоночника выраженный остеофитоз, спондилёз третьей степени, что также хорошо видно на МРТ №39 поясничного отдела позвоночника
На МРТ №40 наблюдается типичный пример развития стеноза второго типа в шейном отделе позвоночника. И аналогичная картина, только, в поясничном отделе позвоночника, отображена на МРТ №41
Так что если при обследовании позвоночника у вас обнаружат спондилёз или остеофиты, то не стоит бояться этого диагноза. На самом деле всё не так страшно, как кажется на первый взгляд.
Спондилёз. Три стадии развития
- Первая — это когда краевые костные разрастания не выходят за площадь выпятившегося межпозвонкового диска.
- Вторая стадия — когда костные наросты выходят за пределы площади выпятившего межпозвонкового диска и огибают его.
- И третья стадия, резко выраженный спондилёз, когда такие костные наросты растут навстречу друг другу, а затем сращиваются вместе, образуя единый оссификат (лат. os, ossis — кость, facio — делать; окостенение), блокирующий движение в соответствующем позвоночно-двигательном сегменте. То есть, образуется своеобразная мощная костная скоба, которая соединяет тела смежных позвонков и жёстко фиксирует сегмент.
Как правило, спондилёз протекает бессимптомно и обнаруживается в качестве случайной «находки» при обследовании позвоночника в связи с другими его заболеваниями.
Образование таких костных структур (шпор) на теле позвонка позволяет организму, во-первых, добиться относительной стабилизации, а во-вторых, изолировать за счёт данных костных наростов выпавшие фрагменты межпозвонкового диска, то есть навести мало-мальский порядок. Образно говоря, спондилёз — это такая стадия для организма, когда «кричать» (сигнализировать болью) уже бесполезно, нужно немедленно действовать. Как говорил древнекитайский мыслитель Конфуций: «В стране, где есть порядок, будь смел и в действиях, и в речах. В стране, где нет порядка, будь смел в действиях, но осмотрителен в речах». Так и с организмом, там где нет порядка, начинаются активные действия.
Гистологическое строение трубчатой кости как органа
Трубчатая
кость как орган в основном построена
из пластинчатой костной ткани, кроме
бугорков. Снаружи кость покрыта
надкостницей, за исключением суставных
поверхностей эпифизов, покрытых
гиалиновым хрящем.
Надкостница,
или периост (periosteum).
В надкостнице различают два слоя:
наружный
(волокнистый) и внутренний
(клеточный). Наружный слой образован в
основном волокнистой соединительной
тканью. Внутренний слой содержит
остеогенные камбиальные клетки,
преостеобласты и остеобласты различной
степени дифференцировки. Камбиальные
клетки веретеновидной формы имеют
небольшой объем цитоплазмы и умеренно
развитый синтетический аппарат.
Преостеобласты — энергично пролиферирующие
клетки овальной формы, способные
синтезировать мукополисахариды.
Остеобласты характеризуются сильно
развитым белоксинтезирующим (коллаген)
аппаратом. Через надкостницу проходят
питающие кость сосуды и нервы.
Надкостница
связывает кость с окружающими тканями
и принимает участие в ее трофике,
развитии, росте и регенерации.
Спондилёз. Рассмотрим течение данного процесса
Спондилёз возникает как следствие заболеваний позвоночника, вызванных дегенеративно-дистрофическими процессами в межпозвонковых дисках. По мере развития последних в межпозвонковом диске, как вы помните, клетки пульпозного ядра атрофируются и некротизируются (умирают). Высота межпозвонкового диска снижается и, соответственно, фиброзное кольцо, испытывая значительные нагрузки, растрескивается и выпячивается (образуется протрузия, затем грыжа межпозвонкового диска). Из-за выпячивания межпозвонкового диска происходит травмирование задней продольной связки, вследствие чего она может даже отслаиваться в месте прикрепления к лимбу (от лат. limbus — кайма) или от тела позвонка. В свою очередь это приводит к её обызвествлению и способствует активизации процесса образования костных разрастаний (остеофитов).
Кроме того, выпячивание фиброзного кольца способствует тому, что площадь межпозвонкового диска увеличивается, образуется нестабильность. Организм же, чтобы относительно стабилизировать данное состояние, пытается соответственно увеличить площадь тела позвонка, включая компенсаторные механизмы, за счёт изменений и трансформации архитектоники (от греч. architektonike — строительное искусство; построение, структура) костной ткани. Есть у нашего организма такое замечательное свойство — приспосабливаться к различным условиям и изменениям, предельно минимизировать возникающие внутри организма проблемы за счёт своих ресурсов. Кости — это вообще-то достаточно лабильная структура, т. е. они способны оперативно реагировать и изменяться под воздействием различных внешних и внутренних факторов. Так вот, костный нарост на теле позвонка (спондилёз) как раз и есть один из результатов работы компенсаторных механизмов.
Должен отметить, что данные компенсаторные механизмы перестройки костной ткани подчинены определённым физическим и биологическим законам. Далеко не последнюю роль в этом процессе играют шарпеевские волокна фиброзного кольца.
Шарпеевские волокна — это пучки соединительнотканных фибрилл. Они проникают, к примеру, из фиброзного кольца межпозвонкового диска в костную ткань тела позвонка и обеспечивают прочную связь. Данные волокна названы шарпеевскими в честь английского анатома и физиолога, который впервые их описал, — Уильяма Шарпея (Sharpey William, 1802-1880), известного своими работами о патологии суставов. Эти волокна уникальны. Они имеются не только в фиброзном кольце, но, например, и в «цементе» корня зуба (особом веществе, представляющем собой видоизменение костного вещества; оно покрывает тонким слоем корень зуба), в сухожилиях (благодаря чему они крепятся к костям). Полноценно функции шарпеевских волокон до сих пор не изучены. Однако данные волокна одни из первых начинают активизироваться в фиброзном кольце, например при включении компенсаторных механизмов с последующим образованием того же костного нароста на теле позвонка (развитии спондилёза).